Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.

Identifieur interne : 001663 ( Main/Exploration ); précédent : 001662; suivant : 001664

Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.

Auteurs : Bahtijor Rasulov ; Eero Talts ; Ülo Niinemets [Estonie]

Source :

RBID : pubmed:27770061

Descripteurs français

English descriptors

Abstract

Plant isoprene emissions respond to light and temperature similarly to photosynthesis, but CO2 dependencies of isoprene emission and photosynthesis are profoundly different, with photosynthesis increasing and isoprene emission decreasing with increasing CO2 concentration due to reasons not yet understood. We studied isoprene emission, net assimilation rate, and chlorophyll fluorescence under different CO2 and O2 concentrations in the strong isoprene emitter hybrid aspen (Populus tremula × Populus tremuloides), and used rapid changes in ambient CO2 or O2 concentrations or light level to induce oscillations. As isoprene-emitting species support very high steady-state chloroplastic pool sizes of the primary isoprene substrate, dimethylallyl diphosphate (DMADP), which can mask the effects of oscillatory dynamics on isoprene emission, the size of the DMADP pool was experimentally reduced by either partial inhibition of isoprenoid synthesis pathway by fosmidomycin-feeding or by changes in ambient gas concentrations leading to DMADP pool depletion in intact leaves. In feedback-limited conditions observed at low O2 and/or high CO2 concentration under which the rate of photosynthesis is governed by the limited rate of ATP and NADPH formation due to low chloroplastic phosphate levels, oscillations in photosynthesis and isoprene emission were repeatedly induced by rapid environmental modifications in both partly fosmidomycin-inhibited leaves and in intact leaves with in vivo reduced DMADP pools. The oscillations in net assimilation rate and isoprene emission in feedback-inhibited leaves were in the same phase, and relative changes in the pools of photosynthetic metabolites and DMADP estimated by in vivo kinetic methods were directly proportional through all oscillations induced by different environmental perturbations. We conclude that the oscillations in isoprene emission provide direct experimental evidence demonstrating that the response of isoprene emission to changes in ambient gas concentrations is controlled by the chloroplastic reductant supply.

DOI: 10.1104/pp.16.01002
PubMed: 27770061
PubMed Central: PMC5129709


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Ü.N.).</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and.</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (B.R.);</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Ü.N.).</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and.</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (B.R.);</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.); ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.) ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27770061</idno>
<idno type="pmid">27770061</idno>
<idno type="doi">10.1104/pp.16.01002</idno>
<idno type="pmc">PMC5129709</idno>
<idno type="wicri:Area/Main/Corpus">001584</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001584</idno>
<idno type="wicri:Area/Main/Curation">001584</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001584</idno>
<idno type="wicri:Area/Main/Exploration">001584</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Ü.N.).</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and.</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (B.R.);</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Ü.N.).</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and.</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (B.R.);</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.); ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.) ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Chlorophyll (metabolism)</term>
<term>Fluorescence (MeSH)</term>
<term>Fosfomycin (analogs & derivatives)</term>
<term>Fosfomycin (pharmacology)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Pentanes (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
<term>Ribulosephosphates (MeSH)</term>
<term>Volatilization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Butadiènes (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Fluorescence (MeSH)</term>
<term>Fosfomycine (analogues et dérivés)</term>
<term>Fosfomycine (pharmacologie)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Pentanes (métabolisme)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Ribulose phosphate (MeSH)</term>
<term>Volatilisation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Fosfomycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Chlorophyll</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Fosfomycin</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Fosfomycine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Butadiènes</term>
<term>Chlorophylle</term>
<term>Composés organiques du phosphore</term>
<term>Feuilles de plante</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Fosfomycine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fluorescence</term>
<term>Kinetics</term>
<term>Models, Biological</term>
<term>Ribulosephosphates</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Fluorescence</term>
<term>Modèles biologiques</term>
<term>Ribulose phosphate</term>
<term>Volatilisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant isoprene emissions respond to light and temperature similarly to photosynthesis, but CO
<sub>2</sub>
dependencies of isoprene emission and photosynthesis are profoundly different, with photosynthesis increasing and isoprene emission decreasing with increasing CO
<sub>2</sub>
concentration due to reasons not yet understood. We studied isoprene emission, net assimilation rate, and chlorophyll fluorescence under different CO
<sub>2</sub>
and O
<sub>2</sub>
concentrations in the strong isoprene emitter hybrid aspen (Populus tremula × Populus tremuloides), and used rapid changes in ambient CO
<sub>2</sub>
or O
<sub>2</sub>
concentrations or light level to induce oscillations. As isoprene-emitting species support very high steady-state chloroplastic pool sizes of the primary isoprene substrate, dimethylallyl diphosphate (DMADP), which can mask the effects of oscillatory dynamics on isoprene emission, the size of the DMADP pool was experimentally reduced by either partial inhibition of isoprenoid synthesis pathway by fosmidomycin-feeding or by changes in ambient gas concentrations leading to DMADP pool depletion in intact leaves. In feedback-limited conditions observed at low O
<sub>2</sub>
and/or high CO
<sub>2</sub>
concentration under which the rate of photosynthesis is governed by the limited rate of ATP and NADPH formation due to low chloroplastic phosphate levels, oscillations in photosynthesis and isoprene emission were repeatedly induced by rapid environmental modifications in both partly fosmidomycin-inhibited leaves and in intact leaves with in vivo reduced DMADP pools. The oscillations in net assimilation rate and isoprene emission in feedback-inhibited leaves were in the same phase, and relative changes in the pools of photosynthetic metabolites and DMADP estimated by in vivo kinetic methods were directly proportional through all oscillations induced by different environmental perturbations. We conclude that the oscillations in isoprene emission provide direct experimental evidence demonstrating that the response of isoprene emission to changes in ambient gas concentrations is controlled by the chloroplastic reductant supply.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27770061</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>172</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.</ArticleTitle>
<Pagination>
<MedlinePgn>2275-2285</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plant isoprene emissions respond to light and temperature similarly to photosynthesis, but CO
<sub>2</sub>
dependencies of isoprene emission and photosynthesis are profoundly different, with photosynthesis increasing and isoprene emission decreasing with increasing CO
<sub>2</sub>
concentration due to reasons not yet understood. We studied isoprene emission, net assimilation rate, and chlorophyll fluorescence under different CO
<sub>2</sub>
and O
<sub>2</sub>
concentrations in the strong isoprene emitter hybrid aspen (Populus tremula × Populus tremuloides), and used rapid changes in ambient CO
<sub>2</sub>
or O
<sub>2</sub>
concentrations or light level to induce oscillations. As isoprene-emitting species support very high steady-state chloroplastic pool sizes of the primary isoprene substrate, dimethylallyl diphosphate (DMADP), which can mask the effects of oscillatory dynamics on isoprene emission, the size of the DMADP pool was experimentally reduced by either partial inhibition of isoprenoid synthesis pathway by fosmidomycin-feeding or by changes in ambient gas concentrations leading to DMADP pool depletion in intact leaves. In feedback-limited conditions observed at low O
<sub>2</sub>
and/or high CO
<sub>2</sub>
concentration under which the rate of photosynthesis is governed by the limited rate of ATP and NADPH formation due to low chloroplastic phosphate levels, oscillations in photosynthesis and isoprene emission were repeatedly induced by rapid environmental modifications in both partly fosmidomycin-inhibited leaves and in intact leaves with in vivo reduced DMADP pools. The oscillations in net assimilation rate and isoprene emission in feedback-inhibited leaves were in the same phase, and relative changes in the pools of photosynthetic metabolites and DMADP estimated by in vivo kinetic methods were directly proportional through all oscillations induced by different environmental perturbations. We conclude that the oscillations in isoprene emission provide direct experimental evidence demonstrating that the response of isoprene emission to changes in ambient gas concentrations is controlled by the chloroplastic reductant supply.</AbstractText>
<CopyrightInformation>© 2016 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0001-5178-8617</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Talts</LastName>
<ForeName>Eero</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-8093-6444</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<Identifier Source="ORCID">0000-0002-3078-2192</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., Ü.N.); ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Technology, University of Tartu, Tartu 50411, Estonia (B.R.); and ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.) ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012274">Ribulosephosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2002-28-0</RegistryNumber>
<NameOfSubstance UI="C001933">ribulose-1,5 diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2N81MY12TE</RegistryNumber>
<NameOfSubstance UI="D005578">Fosfomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5829E3D9I9</RegistryNumber>
<NameOfSubstance UI="C024640">fosmidomycin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005578" MajorTopicYN="N">Fosfomycin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012274" MajorTopicYN="N">Ribulosephosphates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27770061</ArticleId>
<ArticleId IdType="pii">pp.16.01002</ArticleId>
<ArticleId IdType="doi">10.1104/pp.16.01002</ArticleId>
<ArticleId IdType="pmc">PMC5129709</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2006 Mar 6;580(6):1547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24108005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993 Mar;189(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Sep 17;402(2):363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 May 15;481:352-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24614154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jun;168(2):532-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25926480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Jun;90(2):385-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 May;78(1):71-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 Nov;185(4):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Oct;91(2):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Nov;73(3):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Dec;88(4):1125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Dec;38(12):2707-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26037962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Nov;7(11):1705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25038232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2014 Aug;31(8):1043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24921065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001663 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001663 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27770061
   |texte=   Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27770061" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020